Message boards : Science : 52 "endless" programs
Message board moderation
Author | Message |
---|---|
![]() ![]() Send message Joined: 24 Dec 24 Posts: 312 Credit: 5,241,337 RAC: 26,427 ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
My colleague Sergey Grishin and I developed an algorithm for finding a symmetric 19-tuplet with a minimum diameter of 252. This tuple is found using the following pattern 0, 6, 12, 30, 42, 72, 90, 96, 120, 126, 132, 156, 162, 180, 210, 222, 240, 246, 252 In the future, I plan to launch a second Application in the ODLK2025 project, in which we will search for a symmetric 19-tuplet with a minimum diameter of 252 using a different algorithm that is suitable for the BOINC project. In the meantime, I want to offer all crunchers 52 "endless" programs for searching for this tuple. The program is, of course, conditionally infinite. It can be executed, for example, in a year or more, but in a finite time. And if you run it on a supercomputer, it can be executed quickly. But I don't have access to a supercomputer, and on a regular computer the program takes a very long time to run, so I call it infinite. The program is written in PARI/GP language. Program text default(parisizemax,10^9); default(timer,1); \l 19porc_71_res.txt; { \\enter pattern pt=[0, 6, 12, 30, 42, 72, 90, 96, 120, 126, 132, 156, 162, 180, 210, 222, 240, 246, 252]; w=71; fs=15716643102160534111758180; np1=0; print(np1," from number"); np2=0; print(np2," to number"); central=3; \\ end of data pl=#pt; nw=primepi(w); printf("%d \n",pt); print("patterns length ",pl); prs=primes(nw); period=vecprod(prs); print(period," period"); vp=vector(np2-np1+1, i, period*(np1-1+i)); lvp=#vp; printf("search in %d (%.1E) - %d (%.1E)\n", vp[1],vp[1],vp[lvp]+period,vp[lvp]+period); cp=vector(central,i,pt[pl\2-central\2+i]); printf("central %d: %d\n", central,cp); printf("prove by %d#: ",prs[nw]);print(prs); vmy=vector(60); pat1=vector(19); pat2=vector(19); lpr=1; wd=vector(nw); for( ip=1,nw, rip=[]; for( r=1,prs[ip]-1, for( i=1,pl, if( (r+pt[i])%prs[ip]==0, next(2))); rip =concat(rip,r) ); if( prs[ip]==71, rip=[1]); lpr=lpr*#rip; wd[ip]=rip; ); \\for ip print(lpr," formulae expected"); k=0; forvec(v=vector(#wd,i,[1,#wd[i]]), k++; form=lift(chinese( vector( #wd,j,Mod( wd[j][v[j]], prs[j]) ) )); \\ начало проверки кортежа if (form>fs && ispseudoprime(form), foreach(vp,bpp, bpt=form+bpp; if(ispseudoprime(bpt+252), l=0; forprime(p=bpt,bpt+252, l++; vmy[l]=p; ); if(l==19, for(m=2,19, pat1[m]=vmy[m]-vmy[1]; ); pat2=vector(19,i,(pat1[i]==pt[i])); vlds=vecsum(pat2); if(vlds>10, code=fromdigits(pat2[2..18],2); print(vmy[1],": ",pat1); print("valids=",vlds); print("code=",code); print("number form=",k); print (); );\\if vlds> ); \\ if l==19 );\\ if ispseudoprime );\\ foreach ); \\ if form \\ конец проверки кортежа );\\ forvec } ________________________________________________________ From this text we get 52 different programs by changing just one line, highlighted in red. This is the ruler by which we will change the specified line in the program [1,2,4,5,6,7,8,9,11,12,13,14,15,17,18,19,20,21,23,24,25,26,27,28,30,31,34,35,36,37,39,40,42,43,45,47,48,49,50,53,54,55,56,58,60,61,63,64,66,67,68,69]; \\ prs= 71; L=52 I made eight programs for myself, and they are running. In the line you can see eight numbers highlighted in blue, which I used to get the programs. In the first program (which is published here), the line being changed looks like this if( prs[ip]==71, rip=[1]); Then we go along the rule: for the second program if( prs[ip]==71, rip=[2]); for the third program if( prs[ip]==71, rip=[4]); and so on. In the eighth program I have the following line: if( prs[ip]==71, rip=[9]); In the ninth program need to insert the following line if( prs[ip]==71, rip=[11]); If you have a free computer that works continuously, please take one "endless" program and run it. To run it, you will need the gp.exe program You can take this program in one of my archives, for example, here https://disk.yandex.ru/d/iDTZBVlH5g8yTw The working program that is published here has the name 19porc_71.txt The gp.exe program runs the working program in the program shell, the command line to run gp.exe 19porc_71.txt You can run several different programs if you have the resources. But do not run several programs in one folder! The program will rarely find results, you will see them in the console. They will also be written to the output file 19porc_71_res.txt Basically, these will be approximations to the desired tuple. The exact tuple will be found if valids=19 is written in the solution. If you have any questions, ask them in this thread or in PM. Note: if you run and execute all 52 programs, all symmetrical 19-tuplets with a minimum diameter in the given range will be found. But this is only possible on very powerful equipment - a cluster or a supercomputer. The search range in this subtask (15716643102160534111758180, 557940830126698960967415390). |
![]() ![]() Send message Joined: 24 Dec 24 Posts: 312 Credit: 5,241,337 RAC: 26,427 ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This is the console in one of the programs I'm running ? \r 19porc_71e.txt *** Warning: new maximum stack size = 1000000000 (953.674 Mbytes). log = 1 (on) [logfile is "19porc_71e_res.txt"] 0 from number 0 to В number [0,6,12,30,42,72,90,96,120,126,132,156,162,180,210,222,240,246,252] patterns length 19 557940830126698960967415390 period search in 0 (0.E-19) - 557940830126698960967415390 (5.6 E26) central 3: [120,126,132] prove by 71#: [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71] 293416757467545600 formulae expected 253065723084184442877779701: [0, 6, 12, 30, 42, 58, 78, 82, 108, 126, 136, 160, 178, 198, 210, 222, 240, 246, 252] valids=11 code=123151 number form=614466877 You see the approximation found 253065723084184442877779701: [0, 6, 12, 30, 42, 58, 78, 82, 108, 126, 136, 160, 178, 198, 210, 222, 240, 246, 252] The program outputs approximations with valids>10. Approximations can be with valids: 11, 12, 13, …, 18. The exact tuple has valids=19. |
![]() ![]() Send message Joined: 24 Dec 24 Posts: 312 Credit: 5,241,337 RAC: 26,427 ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Recently, after a long search (almost two years), a group of researchers on the dxdy.ru forum found the first symmetrical 19-tuplet with a minimum diameter of 252 9425346484752129657862217: 0, 6, 12, 30, 42, 72, 90, 96, 120, 126, 132, 156, 162, 180, 210, 222, 240, 246, 252 See message https://dxdy.ru/post1668659.html#p1668659 We need to find many such tuples, from which we can obtain a symmetrical 21-tuplet with a diameter of 360. This 21-tuplet has the following pattern 0, 54, 60, 66, 84, 96, 126, 144, 150, 174, 180, 186, 210, 216, 234, 264, 276, 294, 300, 306, 360 In the 10 years of the project's existence, not a single symmetrical 21-tuplet has been found! |
![]() ![]() Send message Joined: 24 Dec 24 Posts: 312 Credit: 5,241,337 RAC: 26,427 ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Announcement Successive patterns. Matryoshka dolls. It will be tomorrow. See https://boinc.mak.termit.me/odlk2025/forum_thread.php?id=22 |
![]() ![]() Send message Joined: 24 Dec 24 Posts: 312 Credit: 5,241,337 RAC: 26,427 ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
I have a result in another "endless" program ? \r 19porc_71g.txt *** Warning: new maximum stack size = 1000000000 (953.674 Mbytes). log = 1 (on) [logfile is "19porc_71g_res.txt"] 0 from number 0 to В number [0,6,12,30,42,72,90,96,120,126,132,156,162,180,210,222,240,246,252] patterns length 19 557940830126698960967415390 period search in 0 (0.E-19) - 557940830126698960967415390 (5.6 E26) central 3: [120,126,132] prove by 71#: [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71] 293416757467545600 formulae expected 166262574678022506733814131: [0, 6, 12, 22, 42, 52, 72, 78, 108, 126, 132, 142, 162, 180, 210, 222, 232, 246, 252] valids=12 code=106941 number form=5922702344 |
![]() ![]() Send message Joined: 24 Dec 24 Posts: 312 Credit: 5,241,337 RAC: 26,427 ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
You may ask: "What if the program suddenly breaks for external reasons?" You simply start another program from 52. I currently have eight programs running all the time. If they all break (on this computer), I will start eight new programs. |
![]() ![]() Send message Joined: 24 Dec 24 Posts: 312 Credit: 5,241,337 RAC: 26,427 ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
36 "бесконечных" программ из этого пакета давно выполняет termit. Он периодически присылает мне результаты. Эти результаты пополняют спектр приближений к 19-ке с минимальным диаметром. Смотрите тему об этом спектре https://boinc.mak.termit.me/odlk2025/forum_thread.php?id=48 Там тоже происходит пополнение данного спектра приближений. Результатов очень много в одной порции, поэтому я обрабатываю их небольшими частями. Это новые приближения к 19-ке с минимальным диаметром с уникальными кодами, полученные проверкой первой части порции результатов 30013916054020837199065171: [0, 6, 12, 30, 58, 72, 90, 108, 120, 126, 148, 160, 162, 168, 180, 208, 232, 246, 252] valids=11 code=121633 number form=318355133993 152814314552321450705321011: [0, 6, 12, 52, 70, 72, 78, 90, 96, 120, 132, 156, 162, 168, 178, 222, 240, 246, 252] valids=11 code=102631 number form=361784444738 103798909526707967826899011: [0, 12, 22, 30, 42, 58, 90, 96, 108, 126, 156, 162, 168, 180, 210, 232, 240, 246, 252] valids=11 code=27931 number form=346410618673 367759740889668380068940491: [0, 6, 12, 30, 52, 58, 76, 96, 120, 138, 160, 162, 178, 180, 208, 222, 240, 246, 252] valids=11 code=116247 number form=325985769851 416256098647400379620927041: [0, 6, 22, 30, 48, 82, 90, 96, 120, 126, 136, 156, 160, 168, 210, 222, 240, 246, 252] valids=13 code=85839 number form=290649083613 17163002887226604401537911: [0, 6, 12, 22, 42, 58, 72, 76, 120, 138, 156, 160, 162, 198, 210, 222, 240, 246, 252] valids=11 code=107055 number form=327200029832 Спектр содержит 63145 уникальных элементов. Обработка порции результатов будет продолжена. Благодарю termit за выполнение этих "бесконечных" программ. Программы будут выполняться очень долго, пока будет работать компьютер. Это интересный алгоритм поиска. Его нельзя было запустить в BOINC-проекте, потому что программы работают слишком долго. Однако я придумала метод распараллеливания подобных "бесконечных" программ на короткие конечные программы. Это мой новый алгоритм. Он пока не реализован в BOINC-проекте. Мы планируем это сделать в ближайшее время. The TBEG BOINC project maintains the database https://boinc.tbrada.eu/spt/explore.php |
![]() ![]() Send message Joined: 24 Dec 24 Posts: 312 Credit: 5,241,337 RAC: 26,427 ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ещё часть результатов обработала от "бесконечных" программ. Найдено 8 новых приближений к 19-ке с минимальным диаметром с уникальными кодами 421293461689135876368612451: [0, 6, 12, 30, 48, 78, 90, 100, 120, 126, 138, 160, 162, 180, 210, 222, 240, 246, 252] valids=14 code=117567 number form=378606760208 30006114856192789760540461: [0, 6, 12, 42, 52, 72, 78, 96, 120, 126, 132, 138, 162, 180, 196, 222, 232, 240, 252] valids=12 code=104372 number form=339673547717 275413889476874622907567501: [0, 22, 30, 42, 70, 72, 76, 108, 120, 126, 132, 156, 162, 180, 196, 222, 232, 246, 252] valids=11 code=5109 number form=316222197384 278943042059380835100078481: [0, 6, 12, 30, 58, 70, 82, 96, 108, 126, 132, 156, 168, 178, 198, 222, 240, 246, 252] valids=12 code=116167 number form=385317325180 416519584381673970494821891: [0, 6, 12, 30, 52, 70, 78, 96, 120, 126, 136, 156, 160, 178, 210, 222, 240, 246, 252] valids=13 code=116559 number form=386883618386 535315312864527156786188731: [0, 6, 30, 42, 70, 72, 78, 96, 120, 126, 132, 142, 156, 198, 210, 222, 240, 246, 252] valids=12 code=71567 number form=336675460059 262820198587904204188135561: [0, 6, 12, 30, 48, 82, 90, 96, 120, 126, 132, 138, 162, 168, 198, 222, 240, 246, 252] valids=14 code=118695 number form=317790598718 254943010932964916966528491: [0, 6, 22, 30, 42, 72, 78, 96, 108, 126, 132, 178, 180, 208, 210, 222, 240, 246, 252] valids=13 code=95631 number form=279267116476 Спектр содержит 63155 уникальных элементов. The TBEG BOINC project maintains the database https://boinc.tbrada.eu/spt/explore.php |
![]() ![]() Send message Joined: 24 Dec 24 Posts: 312 Credit: 5,241,337 RAC: 26,427 ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Corporal прислал очередную порцию результатов от 36 "бесконечных" программ. Начала обрабатывать. Вот первые восемь приближений к 19-ке с минимальным диаметром с уникальными кодами из этой порции 543696882204036286545433981: [0, 6, 12, 30, 58, 78, 82, 96, 126, 138, 160, 168, 178, 180, 210, 222, 240, 246, 252] valids=11 code=115743 number form=476180517489 59072592142185078585773011: [0, 6, 12, 30, 48, 72, 76, 78, 96, 126, 132, 136, 162, 180, 190, 198, 222, 246, 252] valids=11 code=119217 number form=468941391436 299550142902319322140291531: [0, 6, 12, 30, 48, 72, 78, 90, 96, 126, 142, 160, 162, 180, 190, 196, 240, 246, 252] valids=11 code=119091 number form=476710156060 98429173227795768506863081: [0, 6, 12, 30, 42, 48, 76, 90, 96, 126, 132, 156, 198, 208, 210, 222, 232, 240, 252] valids=11 code=123340 number form=460034685409 539890979284841290360488601: [0, 6, 12, 30, 72, 78, 82, 96, 120, 138, 148, 156, 162, 168, 208, 222, 240, 246, 252] valids=12 code=116327 number form=451926906534 502114085701462527292834201: [0, 6, 12, 30, 76, 82, 90, 96, 120, 132, 162, 196, 198, 208, 210, 232, 240, 246, 252] valids=11 code=118283 number form=445242240546 17945556825059518919999101: [0, 6, 30, 48, 70, 72, 90, 96, 120, 126, 136, 138, 168, 196, 198, 222, 240, 246, 252] valids=11 code=73479 number form=480346232977 119078380967585692044106081: [0, 6, 12, 42, 58, 78, 90, 100, 120, 132, 148, 156, 162, 180, 190, 196, 240, 246, 252] valids=11 code=100979 number form=476852920305 Спектр содержит 63214 уникальных элементов. Завтра продолжу обработку. The TBEG BOINC project maintains the database https://boinc.tbrada.eu/spt/explore.php |
![]() ![]() Send message Joined: 24 Dec 24 Posts: 312 Credit: 5,241,337 RAC: 26,427 ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ещё семь приближений к 19-ке с минимальным диаметром от "бесконечных" программ 326007155905160949000165751: [0, 6, 22, 52, 70, 72, 76, 82, 108, 126, 132, 156, 168, 190, 210, 222, 240, 246, 252] valids=11 code=70095 number form=392966091560 428601800435143718013605341: [0, 6, 12, 30, 42, 72, 76, 78, 90, 100, 126, 156, 180, 196, 210, 232, 240, 246, 252] valids=11 code=127051 number form=396766159541 538158896183605906696501381: [0, 6, 22, 30, 48, 72, 90, 96, 120, 126, 132, 148, 156, 180, 198, 210, 222, 246, 252] valids=12 code=90001 number form=441459733514 432718180098234045515444311: [0, 6, 22, 30, 42, 70, 76, 108, 120, 126, 132, 136, 180, 198, 210, 222, 240, 246, 252] valids=12 code=91023 number form=417534613769 33660305541563151973286131: [0, 52, 58, 70, 72, 82, 90, 96, 108, 126, 132, 138, 162, 180, 198, 222, 240, 246, 252] valids=11 code=3511 number form=426674653930 230629643698635229578304141: [0, 6, 12, 30, 48, 52, 90, 108, 132, 138, 148, 156, 160, 180, 210, 222, 232, 246, 252] valids=11 code=116829 number form=418192052404 433163847683917290515999791: [0, 6, 12, 30, 52, 72, 78, 108, 126, 138, 156, 160, 178, 180, 210, 222, 240, 246, 252] valids=11 code=118815 number form=392423506165 Спектр содержит 63224 уникальных элемента. Завтра продолжу обработку. The TBEG BOINC project maintains the database https://boinc.tbrada.eu/spt/explore.php |
![]() ![]() Send message Joined: 24 Dec 24 Posts: 312 Credit: 5,241,337 RAC: 26,427 ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Последние 15 приближений к 19-ке с минимальным диаметром с уникальными кодами от "бесконечных" программ 220279065019059828238050961: [0, 6, 12, 30, 42, 70, 76, 78, 120, 132, 138, 156, 180, 198, 210, 222, 240, 246, 252] valids=12 code=123471 number form=469894273593 169682775248774906835561211: [0, 6, 12, 30, 42, 48, 52, 108, 120, 126, 132, 136, 168, 180, 210, 222, 240, 246, 252] valids=14 code=123807 number form=466623923846 225881711600380722799657111: [0, 6, 42, 52, 72, 76, 90, 108, 120, 126, 132, 156, 178, 180, 210, 222, 232, 246, 252] valids=12 code=68573 number form=415142026989 57708666609705132977059471: [0, 6, 12, 30, 42, 48, 76, 96, 100, 126, 136, 156, 160, 180, 196, 232, 240, 246, 252] valids=12 code=124243 number form=453313480070 55552010227799913425892661: [0, 6, 12, 30, 42, 76, 90, 100, 120, 126, 136, 138, 180, 190, 222, 232, 240, 246, 252] valids=11 code=125699 number form=496472358187 61925039188384485432653701: [0, 6, 22, 30, 70, 72, 90, 96, 100, 126, 132, 156, 162, 168, 178, 190, 198, 222, 252] valids=11 code=89568 number form=487681295516 527180571831356208337085881: [0, 6, 22, 30, 48, 58, 70, 108, 120, 126, 136, 156, 162, 208, 210, 222, 240, 246, 252] valids=12 code=82799 number form=418254785296 474783978414356885833092901: [0, 6, 12, 42, 70, 72, 82, 100, 120, 126, 132, 156, 178, 180, 190, 222, 232, 246, 252] valids=12 code=103381 number form=467596833740 456596714042470370679074131: [0, 6, 12, 30, 42, 76, 78, 82, 120, 126, 132, 148, 178, 180, 210, 222, 232, 246, 252] valids=13 code=123805 number form=420937777943 517556828496867103578758491: [0, 6, 22, 30, 42, 72, 90, 120, 138, 142, 148, 156, 160, 180, 196, 222, 240, 246, 252] valids=12 code=96343 number form=389049252361 118053400296155027856706921: [0, 6, 12, 30, 48, 76, 78, 96, 120, 132, 138, 156, 178, 190, 208, 222, 240, 246, 252] valids=11 code=116295 number form=440329433792 511333932854456496358288081: [0, 12, 22, 30, 42, 72, 90, 96, 120, 126, 156, 162, 178, 180, 198, 222, 240, 246, 252] valids=13 code=32535 number form=415349319448 290824654727189923262386831: [0, 6, 22, 48, 70, 72, 90, 96, 120, 148, 160, 162, 178, 180, 196, 222, 240, 246, 252] valids=11 code=73239 number form=413178975194 316220462038002809467905091: [0, 6, 12, 30, 42, 76, 90, 96, 100, 142, 148, 156, 178, 196, 210, 222, 232, 246, 252] valids=12 code=126029 number form=407372687206 48183429203479616233471651: [0, 6, 12, 58, 70, 78, 90, 96, 108, 120, 132, 160, 162, 168, 210, 222, 232, 246, 252] valids=11 code=101549 number form=487296339430 Спектр содержит 63239 уникальных элементов. Самое интересное приближение с valids=14 169682775248774906835561211: [0, 6, 12, 30, 42, 48, 52, 108, 120, 126, 132, 136, 168, 180, 210, 222, 240, 246, 252] 169682775248774906835561211: [0, 0, 0, 0, 0, -24, -38, 12, 0, 0, 0, -20, 6, 0, 0, 0, 0, 0, 0] 169682775248774906835561211: [1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1] valids=14 code=123807 В этом приближении содержатся приближение к ключевой 17-ке, к центральным 15-ке, 13-ке и 11-ке. Коды приближений не уникальные. The TBEG BOINC project maintains the database https://boinc.tbrada.eu/spt/explore.php |
©2025 Natalia Makarova and Co